

Migrating a running service to AWS

Nick Veenhof

DevOps Track

https://events.drupal.org/barcelona2015/sessions/migrating-running-
service-mollom-aws-without-service-interruptions-and-reduce

Ricardo Amaro

@Nick_vh

Ghent

Barcelona

Boston

Lisbon

+8 Years in Drupal

Search++

4 years at Acquia

Principal Software Engineer

 The Developer

So good to
be back...

Mollom
● Detecting Spam from Ham

○ Reducing your moderation efforts
● Very fast response times (avg under 50 msec)
● Fully Managed SAAS service
● Free and paid version
● Downtime means unprotected sites, which is

bad for reputation and adoption
● Built in Java
●

@ricardoamaro

Portugal

Lisbon

Drupal Community

Family

+7 years Drupal

90’s Linux Adopter

4 years at Acquia

Senior Tier2 Ops Engineer

 The Opsian

Roses, Roses everywhere...

Pre-Migration

How we got the news...

”Operations is now responsible for Mollom servers
being up or down, and basic services being available
(such as SSH, apache, nginx, etc). If further problems
persist above the services layer into the application
layer, Ops is to escalate to Mollom Engineering
immediately. “

Highly
complex
piece of
engineering
on top of
non-cloud
hosting.

?

?

?

?

?

?

20 million http requests per day
8 million of spam requests / day
worst day: 300+ alerts...

One clear guidance example...
Question: “Is disk usage above 95%?”

Answer: “Remove all files that start with the same prefix as
the data file...”

rm -rf Mollom-session_history-he-78609-*

“... and restart Cassandra”

/etc/init.d/cassandra restart

Look before you leap

Architecture
Exercise

Exercise

● One row = One Component.
● I need to be able to “take down”

someone and still be up and
running

● Order is important. I will be a site
visitor, so I want you to start from
the front to the end.

Exercise

● Reverse Proxy (VARNISH)
● Web Server (WEB)
● DNS
● Load Balancer (LB)
● Database (DB)
● Object Caching (Cache)

Ephemeralism

Eye-opener

Describes the optimal environment and how this
relates to reality. Warning, there is no perfect.

A very digestible book for designing distributed
systems. This book exposes software patterns that
every cloud infrastructure engineer should know.

The Practice of Cloud
System Administration

CAP Theorem

It is impossible for a distributed computer system to simultaneously

provide all three of the following guarantees:

● Consistency (all nodes see the same data at the same time)

● Availability (a guarantee that every request receives a response

about whether it succeeded or failed)

● Partition tolerance (the system continues to operate despite

arbitrary partitioning due to network failures)

The Practice of Cloud
System Administration

https://en.wikipedia.org/wiki/Distributed_computing

Cloudformation

“AWS CloudFormation is a service that
helps you model and set up your Amazon
Web Services resources so that you can
spend less time managing those
resources and more time focusing on
your applications that run in AWS.”

Stackin’ it up

Cloudformation

● AutoScaling Groups (ASG)
● Elastic Load Balancer (ELB)
● Elastic Compute 2 (EC2)
● AMI (VM of Ubuntu 14.04)
● Java

Stackin’ it up

Cloudformation

Virtual Private Cloud (VPC)

Amazon VPC lets you provision a
logically isolated section of the Amazon
Web Services (AWS) Cloud where you
can launch AWS resources in a virtual
network that you define.

Isolation isn’t bad, mkay?

Virtual Private Cloud (VPC)

● Private Subnets
● Internal Load Balancers
● Public IP addresses
● Security Groups

Isolation isn’t bad, mkay?

Virtual Private Cloud (VPC)
Isolation isn’t bad, mkay?

Relational Database Service
It’s not a triptych

● Fully Managed
● H/A possible
● Within your VPC, non public
● Option to use MariaDB, Postgres, Aurora, …
● Highly configurable

Relational Database Service
It’s not a triptych

AWS says: “DynamoDB is a fully managed NoSQL
database service that provides fast and predictable
performance with seamless scalability.”

We read: Cassandra without maintenance (and
serious reduction in alerts)!

DynamoDB
Datawarehousing for the masses

● Really fast
● Fully Managed
● No TTL, so we use rotation based tables
● Pricy, but maintenance-free.

DynamoDB
Document storage for the masses

● Dynamic DynamoDB
○ https://github.com/sebdah/dynamic-dynamodb

● Dynamic DynamoDB Manager
○ https://github.com/Mollom/dynamic-dynamodb-manager

DynamoDB
Datawarehousing for the masses

https://github.com/sebdah/dynamic-dynamodb
https://github.com/sebdah/dynamic-dynamodb
https://github.com/Mollom/dynamic-dynamodb-manager
https://github.com/Mollom/dynamic-dynamodb-manager

Elastic Load Balancing (Amazon ELB) automatically
distributes incoming application traffic across multiple
Amazon EC2 instances in the cloud.

EC2 = a VM, hosted on AWS’s supervisor system.

EC2 + Load Balancing
VMception

EC2 + Load Balancing
VMception

Elastic Load Balancing (Amazon ELB) automatically
distributes incoming application traffic across multiple
Amazon EC2 instances in the cloud.

EC2 = a VM, hosted on AWS’s supervisor system.

● Linux as you know it
● AMI-based
● Can disappear or crash. Don’t try to do non-stateless

apps.
● Triggers to auto-scale (read: add/remove a ec2

machine) on predefined inputs.
● Update scheme involves disposable EC2 instances

EC2 + ELB
VMception

EC2 + ELB
Vmception

EC2 + ELB
Vmception

● Access Logging
● Health Check
● H/A (multiple zones)
● Connection Draining
● IPTables-like functionality
● Multiple listeners (read: port

forwarding)
● SSL Termination (port 443, check

cert and forward to HTTP port 80, eg
SSL termination at the load balancer
level)

● No puppet
● No Chef
● No Ansible
● Everything is fully rebuilt on launch, every update is a

new machine
● We do not update single packages, we remove and add

machines.
● Allows for returning to a point in time as the full “state” is

preserved. Note: Data backups are still necessary if this
is required.

EC2 + ELB
So puppet or chef right?

● AWS Cloudwatch
● Diamond + Custom Handlers

○ https://github.com/python-diamond/Diamond
● StatsD / Graphite
● Creating AWS Cloudwatch alarms

per instance for non AWS-specific services

Metrics
Ever seen a cloud with a watch?

https://github.com/python-diamond/Diamond
https://github.com/python-diamond/Diamond

● Nagios + Pagerduty
● Integration with Cloudwatch
● Ordering of alerts, to help those who are

on-call to prioritize.

Alarms
Every Pager has its duty

Returning a different IP
based on your region

DNS

● Using all these techniques to “hand off”
unknown to SAAS services we were able to
drastically reduce the alerts in our system.

● We no longer have frustration that only
10% of our time can go into development.

● Chaos Monkey is welcome, fully
ephemeral.

Result
Happy Devving, Happy Opsing

Questions?

Sprint: Friday

https://www.flickr.
com/photos/amazeelabs/9965814443/in/fav

es-38914559@N03/

Sprint with the Community on Friday.

We have tasks for every skillset.

Mentors are available for new contributors.

An optional Friday morning workshop for first-
time sprinters will help you get set up.

Follow @drupalmentoring.

